National Repository of Grey Literature 6 records found  Search took 0.00 seconds. 
The Use of AFM Measurement Method in Crystalline Silicon Solar Cells Technology
Mojrová, Barbora ; Boušek, Jaroslav (referee) ; Hégr, Ondřej (advisor)
This thesis deals with the use of Atomic Force Microscopy (AFM) and Kelvin Probe Force Microscopy (KPFM) in solar cells production. Both techniques measure surface properties using interactions between surface and tip that progressively scans entire surface of the sample. Atomic force microscopy allows three dimensional imaging of surface structure. Kelvin probe force microscopy is used to measure the contact potential difference on the sample surface. There are described experimental measurements of monocrystalline and multicrystalline substrates after various etching processes using AFM. By using KPFM the contact potential difference was measured on dielectric layers PSG, SiOX, SiNX and Al2O3 and on selective emitter structures. All experiments described in this work were carried out at the Solartec Ltd. workplace and they completely correspond with the actual technology of crystalline solar cells production.
Comparison of microscopic diagnostic methods
Veselý, Jakub ; Tihlaříková, Eva (referee) ; Čudek, Pavel (advisor)
This thesis deals with the description and comparison of diagnostic methods, transmission electron microscopy, scanning electron microscopy and atomic force microscopy. The introduction is a description of diagnostic methods. The following experimental section dealing with the diagnosis of ferritic chromium steel sample methods of scanning electron microscopy, atomic force microscopy, transmission electron microscopy and the evaluation and interpretation of measured results. The conclusion provides a comparison, the advantages and disadvantages of diagnostic methods.
Comparison of microscopic diagnostic methods
Veselý, Jakub ; Tihlaříková, Eva (referee) ; Čudek, Pavel (advisor)
This thesis deals with the description and comparison of diagnostic methods, transmission electron microscopy, scanning electron microscopy and atomic force microscopy. The introduction is a description of diagnostic methods. The following experimental section dealing with the diagnosis of ferritic chromium steel sample methods of scanning electron microscopy, atomic force microscopy, transmission electron microscopy and the evaluation and interpretation of measured results. The conclusion provides a comparison, the advantages and disadvantages of diagnostic methods.
Comparison of microscopic diagnostic methods
Veselý, Jakub ; Tihlaříková, Eva (referee) ; Čudek, Pavel (advisor)
This thesis deals with the description and comparison of diagnostic methods, transmission electron microscopy, scanning electron microscopy and atomic force microscopy. The introduction is a description of diagnostic methods. The following experimental section dealing with the diagnosis of ferritic chromium steel sample methods of scanning electron microscopy, atomic force microscopy, transmission electron microscopy and the evaluation and interpretation of measured results. The conclusion provides a comparison, the advantages and disadvantages of diagnostic methods.
Comparison of microscopic diagnostic methods
Veselý, Jakub ; Tihlaříková, Eva (referee) ; Čudek, Pavel (advisor)
This thesis deals with the description and comparison of diagnostic methods, transmission electron microscopy, scanning electron microscopy and atomic force microscopy. The introduction is a description of diagnostic methods. The following experimental section dealing with the diagnosis of ferritic chromium steel sample methods of scanning electron microscopy, atomic force microscopy, transmission electron microscopy and the evaluation and interpretation of measured results. The conclusion provides a comparison, the advantages and disadvantages of diagnostic methods.
The Use of AFM Measurement Method in Crystalline Silicon Solar Cells Technology
Mojrová, Barbora ; Boušek, Jaroslav (referee) ; Hégr, Ondřej (advisor)
This thesis deals with the use of Atomic Force Microscopy (AFM) and Kelvin Probe Force Microscopy (KPFM) in solar cells production. Both techniques measure surface properties using interactions between surface and tip that progressively scans entire surface of the sample. Atomic force microscopy allows three dimensional imaging of surface structure. Kelvin probe force microscopy is used to measure the contact potential difference on the sample surface. There are described experimental measurements of monocrystalline and multicrystalline substrates after various etching processes using AFM. By using KPFM the contact potential difference was measured on dielectric layers PSG, SiOX, SiNX and Al2O3 and on selective emitter structures. All experiments described in this work were carried out at the Solartec Ltd. workplace and they completely correspond with the actual technology of crystalline solar cells production.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.